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Abstract 
Learning Bayesian network structure from large-scale data 

sets, without any expert-specified ordering of variables, remains 
a difficult problem. We propose systematic improvements to 
automatically learn Bayesian network structure from data. (1) 
We propose a linear parent search method to generate candidate 
graph. (2) We propose a comprehensive approach to eliminate 
cycles using minimal likelihood loss, a short cycle first heuristic, 
and a cut-edge repairing. (3) We propose structure perturbation 
to assess the stability of the network and a stability-improvement 
method to refine the network structure. The algorithms are easy 
to implement and efficient for large networks. Experimental re-
sults on two data sets show that our new approach outperforms 
existing methods.  

1. Introduction 
The rapidly increasing quantity of data in many data mining 

fields allows a great opportunity to model and understand the 
relationships among a large number of variables. Bayesian Net-
works (BNs) [13][6][8][1] provide a consistent framework to 
model the probabilistic dependencies among variables, e.g. in 
medical image mining [15]. A BN [6][8] is a Directed Acyclic 
Graph (DAG) G = (V, E) that models the probabilistic dependen-
cies among a group of variables (nodes). The joint distribution 
can be factorized into the product of conditional probabilities of 
every variable given its parents: P({g}) = Πg∈VP(g|πg), where g 
stands for a variable, πg is the parents of g; the directed edges 
among nodes encode the respective conditional distributions.   

Directly identifying the BN structures from input data D re-
mains a challenge. The problem is NP-hard [3][6]. Many heuris-
tic search methods have been proposed (for reviews see [8][1]). If 
there is a predefined ordering of variables, the well-known K2 
algorithm [6] can efficiently determine the structure. For many 
applications where there is no sufficient knowledge to provide 
such an ordering, the BN-learning methods, e.g. conditional in-
dependence test based method [2], often have at least O(n4) com-
plexity. Other Monte Carlo methods have even larger complex-
ity, e.g. the search method based on random-sampling and model 
averaging in the space of ordering [7]. Clearly, an efficient algo-
rithm to identify BN structures, without requiring ordering of 
variables, is particularly important. There exist several meth-
ods/software. For example, the WinMine software of Chickering 
[4] has the strength to learn large BN structure. Cheng designed 
PowerConstructor [[1]] and won data mining contest KDD-
Cup-2001. 

We propose a new O(n2) algorithm to infer locally stable 
Bayesian networks without requiring predefined ordering of vari-

ables or predefined thresholds to terminate the model search. Our 
algorithm consists of three main steps. (1) We develop an effi-
cient algorithm to search optimal parents, which form a candidate 
graph (See §2). (2) We propose a new graph-based method to 
eliminate possible cycles in the candidate graph that would vio-
late the acyclic assumption of BNs (See §3). (3) We evaluate the 
network stability using structural perturbation. The structural 
perturbation can detect unstable local structures; an algorithm for 
improving the stability is proposed  (See §4). 

We assume a uniform prior of the structure of G. The poste-
rior (log-likelihood) of G given the data D, ℓ(G) = logP(G|D) ∝ 
logP(D|G), is used to judge the optimality of G. The posterior 
can be evaluated using different scores, including the Bayesian 
score [6] and its variant [5], MDL [1], BDe [8], etc. In this paper, 
we use the Bayesian score, but other scores can be equally well 
adopted in our structure identification algorithms.  

2. Candidate Graph 
The candidate graph Gc is a directed graph containing impor-

tant associations of variables where the redundancy of associa-
tions should be minimized. Our approach is to identify the opti-
mal parent set for each node based on the Bayesian score ℓ. Here 
our emphasis is on how to efficiently search for optimal parent 
set, π = {g* 

i , i=1,…,m}. The locally optimal parent set is similar 
to dependency graph of Heckerman et al [9][11]; the difference is 
that they used regression to determine the dependency while we 
directly search based on the Bayesian score. 

Our algorithm is an extension of K2 algorithm [6]. K2 uses a 
simple incremental search strategy: it first searches for the best 
singleton parent g* 

1, i.e., g* 
1

 = argmaxi ℓ(gi→g), and ℓ(gi→g) > 
ℓ(g) + ℓ(gi). It then searches for further parent(s) to maximize the 
score increase in each step, until no better score can be found.  

We extend K2 in two directions. (a) We constrain the search 
in the most probable space to reduce the computational complex-
ity. Note that once a parent or parents are found, many of the rest 
nodes are rendered conditionally independent. Thus in searching 
for the second parent g* 

2, we do not need to search through all the 
rest variables, Ω1={V \g* 

1}; instead we need only search  
Ω1

+ = {gi∈V  | gi≠g* 
1, ℓ(gi→g) > ℓ(gi) + ℓ(g)}.        (1) 

Note that Ω1
+ is obtained automatically when searching for g* 

1. 
Similarly, when searching for g* 

3, we need only search Ω2
+, in-

stead of Ω2={V \{g* 
1 , g* 

2}}; etc. This restriction saves a large frac-
tion of the searched space.  

(b) We systematically search a larger space than K2. In K2, g* 
1 

corresponds to the largest ℓ(gi→g). Denote the respective parent 
set as π(1). We can search another set of parents beginning with 
the second largest ℓ(gi→g), denoted as π(2). If π(2) leads to better 



score than π(1), then we take π(2) as the final parent set. We call 
this 2-max search. This can be extended to k-max search. Clearly, 
the Bayesian score of π(k) increases monotonically with k, at the 
expense of linearly enlarged complexity. 

We call this modified method the K2+ algorithm. It has the 
complexity O(αkmn), where α counts for the reduction using 
Ω1

+, Ω2
+,…, Ωm

+  instead of Ω1, Ω2 ,…, Ωm  (often Ωi
+ contains a 

much smaller number of variables than Ωi). Accordingly, the 
complexity to construct the whole candidate graph is O(n2). 

3. Cycle Elimination 
Since the candidate graph Gc is generated via local optimal 

search, it is possible that Gc contains many cycles that violate the 
basic acyclic assumption of BNs.  

A simple approach is to enumerate all possible DAGs that 
could emerge from Gc and select the one with the largest score. 
However, this method is impractical due to its exponential com-
plexity. Approximation methods based on random edge cut [12] 
have been studied. A heuristic decision-tree based approach has 
also been studied in [11]. In this paper, we resolve this problem 
via graph algorithmic approach. Our comprehensive approach 
consists of three methods that can be implemented efficiently.  

Any cycle must lie in a Strongly Connected Component 
(SCC) of the graph. An efficient O(n) algorithm based on depth-
first search can  locate SCCs in a directed graph. We first find all 
the SCCs in Gc, and eliminate cycles within each SCC. 

3.1 Bayesian Likelihood Loss Function 
If a SCC contains one cycle, we can break one cycle at a time. 

We break cycles based on loss function. For each edge gi→gj, we 
define the loss as the reduction of Bayesian log-likelihood for gj 
due to the loss of one of its parent 

w(gi→gj) = ℓ(gj | π) −  ℓ(gj | π \ gi).      (2) 
Note that w(gi→gj) ≠ w(gi←gj). Although mutual information 
might be another possible choice as the loss, it does not reflect the 
joint association between different parents and gj.  

If a SCC contains several cycles, sometimes they share one or 
more common edges, such as the cycles in Figure 1. For exam-
ple, in Figure 1(a) the edge g2→g3 is shared by the cycles C1231 
(i.e. g1→g2→g3→g1) and C2342.  

There are several criteria to break the cycles. (a) We can sim-
ply cut edges with the smallest loss. (b) We can identify the 
common edges and cut the one shared by most cycles. In Figure 1 
(b), cutting the common edge g2→g3 will eliminate two cycles. 
(c) The loss function criterion indicates there could be better 
choices. Suppose g1→g2 and g3→g4 are the edges with the mini-
mal loss in cycles C1231 and C2342. If the condition 

  w(g1→g2) + w(g3→g4) < w(g2→g3)   (3) 
holds, then we break edges g1→g2 and g3→g4; otherwise, we 
break the edge g2→g3. 

Figure 1 (b) illustrates a more complicated SCC with four 3-
node cycles C2312, C2342, C2542, C2642. The edge g2→g3 is shared 2 
times and the edge g4→g2 is shared 3 times. We start cycle elimi-
nation from the most-shared edge (i.e. g4→g2) and use a minimal-
likelihood-loss strategy similar to Eq.(3). If the edge g4→g2 is cut, 
then only C2312 remains and we will further cut its minimal loss 

edge; otherwise we use Eq.(3) to decide which edge(s) in cycles 
C2312 and C2342 should be broken.  

This minimal-likelihood-loss criterion is summarized as fol-
lows. If there is no nested cycle, for each cycle we break the edge 
with the minimal loss. When several cycles nest among them-
selves, we identify the edge eij shared by most cycles and com-
pare its loss with the sum of the minimal loss edges in participat-
ing cycles; if breaking eij leads to less loss, we cut eij; otherwise 
we cut the minimal loss edges in every participating cycle. 
 

 
 

(a) (b) (c) 
Figure 1. (a) A SCC with two 3-node cycles. (b) A SCC with 
four 3-node cycles. (c) A SCC with a 3-node cycle and a 4-node 
cycle. Multiplicities of nodes are shown in parentheses. 

3.2 Short-Cycle-First Heuristic  
Finding the set of cut edges with regarding to the minimal-

likelihood-loss criterion could be complicated due to the exis-
tence of many cycles and the large number of common edges 
they share. We propose a short-cycle-first heuristic to minimize 
the complexity (for both computation and implementation):  

(a) In BNs, information propagates multiplicatively because 
of the probability calculation. Along a fixed path of m edges, the 
influence of the starting node on the ending node is P1P2⋅⋅⋅Pm 
approximately. Therefore, in general, a long cycle violates the 
acyclic assumption less severely than a short cycle. If a SCC con-
tains cycles of different lengths, our short-cycle first heuristic 
breaks the 2-node cycle first, and the 3-node cycle second, etc. In 
Figure 1 (c), we first break the 3-node cycle C2352. Afterwards, we 
break the cycle C12341 if it still exists.  

(b) When cycles of different lengths share edges, it is typically 
more efficient to break the shorter cycle first. For example, sup-
pose two cycles Ca and Cb (with lengths a and b, respectively) 
share one common edge, and the cut-edge-loss-function is homo-
geneous. Approximately there is 1/a chance to break the common 
edge in Ca, and 1/b chance to break it in Cb. If a<b, then it is more 
likely (i.e. 1/a > 1/b) that first breaking Ca (the shorter one) will 
simultaneously break Cb.  

3.3 Cycle Identification by Matrix Multiplication  
Short-cycle-first heuristic can be efficiently implemented 

through a matrix multiplication method. Let A be the adjacency 
matrix of a SCC. Diagonal elements of A are zeros. We compute 
Am with the smallest m such that nonzero elements appear at ma-
trix diagonal; with some elementary algebra, we can show that 
(1) nodes corresponding to nonzero diagonal elements in Am must 
involve in m-node cycles; thus finding these cycles are restricted 
to the subgraph induced by these nodes; (2) the multiplicity of 
node i (i.e. value of (Am)ii) equals the number of times a cycle 
pass through node i (for example, in Figure 1 (a) and (b) the mul-
tiplicity of nodes are indicated by red numbers in parentheses). 
(3) Starting from the node with the highest multiplicity using 
breadth-first-search algorithm, restricting on the subgraph, we can 



easily traverse all m-node cycles and identify the most-shared 
edges. For example, in Figure 1 (b), we can start from g2 and 
quickly identify the most-shared edge e42. We use the likelihood 
loss criterion to break cycles. Note that A is usually very sparse 
and the sparse matrix multiplications often involve much less 
computation than dense matrixes.  

After one or more edges are cut, we re-run the SCC-detection 
algorithm to identify the new SCCs and the matrix multiplication 
method to identify shortest remaining cycles. This is repeated 
until all cycles are eliminated.  

3.3 Repair of Local Structures 

Once an edge gi→gj in the candidate graph Gc is cut, there is a 
loss of the likelihood of ℓ(gj|πj) because now gj's parent set πj  is 
less optimal. Hence, we use K2+ parent-search to repair the par-
ent set of each node whose incident edges have been cut. The 
repair is done locally, i.e., all other parents of gj are retained dur-
ing the repair of πj. In addition, the repair is subject to the acyclic 
condition, i.e. the best replacement edge cannot cause cycles.  

Suppose in cycle elimination, M edges are cut and the local 
structures of the involved nodes need repair. We notice the first-
repaired local structures will give extra-constraints on the space 
of the later-repaired local structures due to the acyclic condition 
(i.e. potentially the search-space of the later-repaired local struc-
tures would be shrunk). By comparing the candidate graph Gc 
and the DAG G returned from cycle elimination, we first locate 
the nodes whose local structures need repair. We calculate the 
likelihood loss of a node due to the cutting of incident edges. We 
sort these loss values from large to small, and repair the nodes 
according to this ordering. This maximal-loss-first heuristic is 
consistent with the minimal-likelihood-loss criterion. Clearly, 
during the course of repair, the DAG after each local repair will 
always have a higher likelihood score than the DAG before this 
local repair. This repair algorithm has the complexity of O(βn), 
where β is the number of nodes whose parent-sets are repaired.  

4. Structure Perturbation and Stability En-
hancement 

To assess the quality of the obtained network G, we perform 
local structural perturbations to assess its stability. Here we con-
sider the Edge Perturbation ("EP"), i.e., we attempt to eliminate 
an edge eij = gi→gj to see if the Bayesian likelihood is improved.  
A "brute force" perturbation is to simply cut eij. However, after eij 
is cut, gj's parent-set is no longer optimal. For this reason, we use 
the K2+ algorithm to find the new optimal parents for g2, exclud-
ing the cut edge (but keeping all other parents if any). We calcu-
late ∆ℓe

EP and the percentage of stable edges  

)|(
)ˆ|(log)()ˆ(  ),(||

1

GDP
GDPGGr EP

eEeE
EP =−=∆∆Σ=

∈
llllδ ,   (5) 

where Ĝ is the perturbed structure, δ(x) = 1 if x ≤ 0 and 0 other-
wise. The more negative ∆ℓe

EP, the more "stable" the edge e is. 
rEP indicates the local stability of G. A stable G has rEP ~ 1.  

By using perturbation, we can identify those unstable edges 
whose replacements lead to better likelihood scores. We may 
improve the network structure by replacing these unstable edges 
with their replacements. The edge-stability-improvement algo-

rithm first sorts the ∆ℓe
EP of all unstable edges. Similar to the re-

pair algorithm in §3.3, it then goes through all unstable edges 
following the sorted ordering (starting with the most unstable 
edge). For a given unstable edge e, the optimal replacement 
found in EP is first tried to see if there is cycle caused. If no, then 
the optimal replacement is used; otherwise, the K2+ search algo-
rithm is invoked to search the best replacement (similar to §3.3, 
the search is subject to the acyclic condition, and all other parents 
of the current node are retained.). By applying the edge-stability-
improvement algorithm, the Bayesian likelihood score of G is 
improved while the number of unstable edges is reduced.  

Our goal is to detect and repair unstable edges to improve a 
single structure. This differs from other edge quality assessments, 
e.g. averaging over a large number of structures [14], where the 
edge importance is not associated with a particular structure.  

5. Experiments 
We use two data sets in this paper. The first is the well-known 

Alarm data set [6] (37 variables, 10000 samples). The intrinsic 
ordering of these variables is not used since our major concern is 
how to detect the network structure without the ordering informa-
tion. We use the Alarm data accompanying the PowerConstructor 
software [2]. We compare our results with WinMine [4][11] (be-
cause it can generate DAGs without ordering of variables) and 
the best/mean results of random-sampling method in the space of 
variable ordering [7]. 

The second data set is a yeast genome [10] (481 real-valued 
gene variables, 300 data points). The variables are discretized to 
3-states via thresholding at µ±0.4σ (σ - standard deviation, µ - 
mean). These states correspond to the over-expression, baseline, 
and under-expression of genes.  

Beside the Bayesian score, we also compute the (normalized) 
data likelihood L based on the learned structure and conditional 
probabilities. We further compute the cross-validated likelihood 
(10-fold CV) LCV, which is a better indicator for generalization.  

5.1 Results on Alarm Data Set  
The results on the Alarm data set are shown in Table 1. Re-

sults of our algorithms, WinMine, and ordering-space-search, are 
shown, together with those of the true Alarm structure and the 
null model (i.e. without edges). The k-max search in K2+ clearly 
improves the quality-measures ℓ, L, LCV and rEP (i.e. the 3-max 
search results are better than the 1-max search results). The edge 
stability algorithm of §3.3 clearly improves all the ℓ, L, LCV, and 
rEP. rEP becomes 1 afterwards.  

Compared to true model results, our best results (i.e. 3-max 
with improved stability) are very close. Remember that the order-
ing of variables is assumed unknown, thus it is highly unlikely 
that the true structure can be recovered from data. Hence, these 
results indicate our network can model the data almost equivalent 
to the true model, with a different network structure (57 edges in 
our model versus 46 edges in the true model). 

We run WinMine using three different κ values, 0.01 (default 
value), 0.002, and 8e-12, to adjust the network to have the same 
number of edges as our results or as the true model. The quality 
metrics of these structures are not as good as our results. 

When variables' ordering is unknown, one may generate many 



random orderings, use K2 to learn structures, and select the best 
ones [7]. We perform this ordering-space-search for 100 random 
trials. Both the mean and best results are listed in Table 1. They 
are substantially worse than both our and WinMine's results, indi-
cating it is hard to generate good models from random orderings 
of variables, even at great computation expense.  
Table 1. Results on the Alarm data set. (ℓ, L, LCV are all normalized by 
nN; κ is the WinMine parameter controlling the complexity of network 
structure. "ImpStab" means improving stability algorithm in §4.)  

Learning (all data) CV (10-
fold) Method 

Parent 
Search 
Method ℓ L rEP |E| LCV 
1-max -0.2587 -0.2543 0.9123 57 -0.2554 Our method 

(Before ImpStab) 3-max -0.2581 -0.2539 0.9298 56 -0.2550 
1-max -0.2566 -0.2522 1.0000 56 -0.2533 Our method 

(After ImpStab) 3-max -0.2562 -0.2519 1.0000 57 -0.2530 
True Model -0.2555 -0.2517 0.9783 46 -0.2526 

κ = 0.01 
(Default) -0.2593 -0.2551 1.0000 57 -0.2561 

κ = 0.002 -0.2593 -0.2551 1.0000 57 -0.2561 
WinMine 

κ = 8e-12 -0.2655 -0.2622 0.9783 46 -0.2630 
Best results -0.2633 -0.2578 0.8730 63 -0.2592 Search of Ordering 

Space 
(100 trials) Mean results -0.2701 

±0.0026 
-0.2631 
±0.0023 

0.8765 
±0.0521 

74.0
±5.4

-0.2650 
±0.0023 

Null Model -0.5822 -0.5813 --- 0 -0.5815 

5.2 Results on Yeast Gene Expression Data Set  
Table 2 compares the results on the yeast gene data. In both 

our BNs and WinMine's results, there are more than 1600 edges 
for the 481 nodes. For learning, Table 2 shows that k-max search 
in K2+ improves ℓ, L, and rEP. The edge-stability-improvement 
algorithm leads to steady improvements in all quality-measures.  

We also run WinMine for a variety of parameter κ. The best 
results are obtained by setting κ to its maximal value, i.e. 1.0. 
Table 2 shows that in the best case, WinMine results are worse 
than that of 3-max, i.e. smaller ℓ, smaller rEP, and less generaliza-
tion strength LCV. It is interesting to see that the training likeli-
hood L of WinMine result is higher than that of 3-max, however 
LCV of WinMine is lower than that of 3-max; this implies that the 
best network of WinMine might overfit data slightly.    

Table 2 also lists the time (on PIII 1G CPU) of each method. 
A plus "+" in our results means the time spent for the current step 
for edge stability improvement. (Our algorithms were imple-
mented in Matlab and C++, while WinMine was in C++). Our 
method uses less than 16 minutes to generate an initial BN, and 1 
hour or so to refine the network structure. In contrast, WinMine 
takes about 4 hours to generate a network with the similar per-
formance. These timing results show that our methods are much 
faster than WinMine, due to our algorithm's O(n2) complexity. 

 

6. Discussions  
A characteristic of the networks in our results is that they are 

rather sparse, which partially explains the high local stability of 
the obtained structures regarding to the perturbations. We use 
local structural perturbations to systematically assess the roles of 
individual edges in the network. Based on them, one could build 
larger subnet-level perturbations using clustering, seed growing, 
etc. This could help to detect sub-structures of BNs [16].  
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Table 2. Results on the Yeast gene expression data. b is the number 
of iterations in stability enhancement. 

Search Method 
and Parameters Learning (All Data) CV (10-fold)

k-max b ℓ L rEP |E| T (min) LCV 
0 -0.9770 -0.8269 0.6222 1326     9 -0.9420 
1 -0.9691 -0.7831 0.8451 1517 +44 -0.9303 
2 -0.9662 -0.7687 0.9426 1586 +25 -0.9255 
3 -0.9654 -0.7640 0.9863 1611 +  8.7 -0.9242 

1-max 

4 -0.9651 -0.7627 0.9951 1620 +  1.8 -0.9237 
0 -0.9710 -0.8019 0.7077 1433   16 -0.9338 
1 -0.9654 -0.7689 0.8901 1583 +40 -0.9250 
2 -0.9639 -0.7624 0.9579 1614 +27 -0.9226 
3 -0.9635 -0.7612 0.9821 1620 +14 -0.9220 
4 -0.9634 -0.7606 0.9889 1624 +  6.2 -0.9218 

O
ur

 M
et

ho
d 

3-max 

5 -0.9631 -0.7588 0.9957 1634 +  0.09 -0.9212 
κ ℓ L rEP |E| T (min) LCV 

0.01 (Default) -1.0218 -0.9918 0.2868 272 57 -1.0063 
0.50 -0.9916 -0.9373 0.4944 627 115 -0.9683 
0.99 -0.9644 -0.7744 0.9064 1528 229 -0.9239 
0.999 -0.9638 -0.7591 0.9468 1616 235 -0.9224 W

in
M

in
e 

1.00 -0.9636 -0.7554 0.9494 1641 268 -0.9220 
Null Model -1.1079 -1.0918 --- 0 0 -1.0987 
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